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A closed form is given for a three-parameter family of transition matrices describing continuous-time
nonsymmetric random walks on a d =1 semi-infinite lattice. The boundary conditions are general, allowing for
an arbitrary mixture of reflection, trapping, and sojourn. Special cases give the quantum propagator for
the half-lattice, and transition matrices for the random walk on the Bethe lattice and the single-server queue

M/M/1/e.

PACS number(s): 05.50.+q, 05.40.+j, 02.50.Ga, 02.50.Ey

Continuous-time random walks on a d=1 lattice in the
presence of a partly sticky, partly reflecting, or partly trap-
ping boundary have many biological, physical, and chemical
applications. A master transition matrix is derived here that
simultaneously incorporates these features. The method of
solution is to transform the boundary condition into a local
interaction, so that the problem is unfolded onto the full lat-
tice. The lattice energy Green’s function is then obtained by
summing the complete perturbation series. In configuration
space, the final result is a convolution of generators of biased
and symmetric random walks.

The approach used here provides an independent, com-
pact way to derive exact transition matrices for an array of
quantum and classical lattice problems. One such is the
imaginary-time Schrodinger propagator for a lattice particle
hopping on the half-lattice—the discrete-space generaliza-
tion of the known continuum solution [1]. Also included here
is the complete transition matrix for the random walk on the
Bethe lattice, for which the discrete-time return probability
has recently been obtained using the method of generating
functions [2]. In turn, the Bethe lattice return probability
follows from the complete Green’s function for the discrete-
time walk in a constant field in the presence of a reflecting
barrier, obtained many years ago by deriving the complete
set of eigenvectors and eigenvalues of the evolution matrix
[3]. The continuous-time solution of the general problem
treated in [3] is also a special case of the result given below.
The present result includes the exact lattice transition matrix
for a symmetric d=1 random walk in the presence of a
reflecting and trapping boundary, a standard mixed boun-
dary condition problem on the continuum [4]. Also incorpo-
rated here is an independent matrix-algebraic derivation of
the transition matrix for the infinite single-server queue
M/M/1/ with Poisson arrival and service times [5]. The
algebraic technique used here can be applied generally to
quantum problems in which there are highly localized eigen-
states. For example, it has recently been used in the context
of the discrete value representation to obtain an approximate
density of states for a model of resonant quantum tunneling
[6].

The problems of interest can be formulated in terms of the
semi-infinite stochastic system

P(t)=E-P(t). @
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The objective is to derive a closed form expression for
P;.(?), (j,m) = 0,1,2,3,..., the probability that a random
walker moves from cell m to cell j in elapsed time #, given
the evolution operator E. The walk is taken to be nonsym-
metric, so that Eq. (1) describes the continuous-time limit of
a Markov process with nearest neighbor transitions. Admis-
sible evolution operators E are therefore tridiagonal, with
column sums E,,,Ejm =0, and one can write E=M—I, where
M is a stochastic matrix, 0<M;,, <1, Z,,M;,, =1, describing
the underlying Markov process. The stochastic matrix with
the general boundary conditions of interest is

M= 1-p 0 p . 2

It is convenient to define the reduced transition matrix
K=Pe¢’, and to replace (1) by

K(£)=M-K(¢). (3)

In (2), (p, 1—p) are the (right, left) step probabilities of a
free nonsymmetric random walk, (g, 1—¢q) are the sojourn
and reflection probabilities at the (cell 0) boundary, and
1— o is the conditional probability that the walker is trapped
at the boundary, given a sojourn there. The choice g=0 cor-
responds to pure reflection, or equivalently to the random
walk on an infinite Cayley tree or Bethe lattice with coordi-
nation number J = 1/p. The choice g =1 makes the boundary
a certain trap, while =1, g#0 leads to the random walk in
the presence of an elastic barrier and to imaginary-time
quantum mechanics on the half-lattice. The case g=p,
o=1 gives the problem of the infinite single-server queue
M/M/1/.

Discrete-space path sum. That there is a closed form so-
lution for (2) and (3) follows from three observations. First,
as shown explicitly below, one may decompose the evolution
operator in (3) as M=M,+ V, where M|, generates the free
nonsymmetric lattice walk and V is an ““interaction” incor-
porating the boundary conditions at cell 0. One can then
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time-slice and formally write the transition matrix as the
Trotter product K(¢)=exp(Mt) =limy_, .(e*M0e®V)¥, where
e=t/N. Second, because the boundary conditions are
equivalent to a point interaction, V2xV, and therefore
e*V=I+[e+0(&%)]V. In the Trotter limit the probability
of every path from m to j thus factorizes as
(mx)(xx)(xx)- - - (xx)(xj), where (mx) is the probability of
a path segment from m to the boundary, and (xx) represents
the probability of a closed path with initial and final, but no
other, boundary points. Third, because of the pointwise inter-
action the transition matrix can be expressed as the double
sum over (1) all possible allocations of total time ¢, given a
path containing a fixed number, k, of closed loops (xx), and
(2) over all path lengths k=0. The sum over path lengths
evaluates the perturbation series in V and in general results
in an exponential function of the effective coupling constant.
Given the sum over path lengths, the time allocation sum
becomes a k-fold convolution integral. Below, I evaluate the
Laplace transform of this multiple convolution and show that
the inverse transform gives K(¢) in the form of a single,
time-weighted convolution of generators of biased and sym-
metric random walks.

Unfolding. For algebraic simplicity, it is helpful to follow
previous treatment of the Bethe lattice walk [7] and to unfold
(2) and (3) into a doubly infinite lattice system. To do so, one
decomposes the evolution operator (2) into the free particle
operator

My(p)

p
0 P
= 1-p 0 )4
1-p 0
1-p
(4)
and the ““interaction”
V(p.q,0)
0 0
0 -p 0
= 0 qo 0
0 p—qg O
0 0
(5)

The choice Prob(0— —1)=0 implemented in (4) and (5)
preserves the dynamics of paths with initial points on the
positive half-lattice.
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Dimensionless form. Rescale time by 7=2/p(1-p)t,
and define the parameters y=vp/(1—p), B
=q/[2Vp(1—p)]. Then (3) becomes

K(7)=(Q+W)-K(7), (6)
with
Y
0 v
1 Y
Q=§ 1 )]
-0
Y
1
Y
0 0
0O -y O
0 v—B 0
0 0
(€))

Summing the perturbation series. The Laplace transform
of Eq. (6) «can be solved algebraically for
K(k)=[3K(7)e ¥"dr, which can be expressed as

K(k)=[kI-Q-W] '=(Ky'=W)~!
=Ko+ Ko(W+ WKW+ - K=K, + K,SKy.  (9)
In (9), I is the (doubly infinite) unit matrix, and

) ~ig—ulj=m]
[Ro() =Tt "

Sint k= coshu (10)

is the transform of the free random walk transition matrix

[KO(T)]jmz’ymngj~m(T)~ (11)

In (11), 1,,(7) is the modified Bessel function of order m.
The matrix sum S in (9) may be evaluated easily because
the one-column form of W results in

1
=§[ 7(A01—A0,—1) + BoAgp— BAxIW  (12)

for any matrix A. In particular, from (12) the sum S in (9) is
a geometric series with expansion parameter
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_ 1 X ~ To complete the evaluation of (9), observe that for any A we
(KoW)go=5—=—[(y"—yB—1)e “+Bo], (13)  also have

2 sinhu

and we have

1 .
(AWA) ,, :E[ Y(Aj1—Aj 1)+ BoAj— BA; 1A, -
(15)
Using (15) and (10), the full “interaction term” in (9) is

Y1 [(y2= By)ewli-11-ulml _ g —uli+1l=ulnl | g e =ulil-ulm]

W
§=— —— (14)
1—(KyW)go
|
[KoSKojm=

sinhu

A check on (16) follows from setting y= and expanding
the bracketed expression as a power series in e ~ ¥, obtaining,
with the proper rescaling of time, the series expansion Eq.
(4.32) of [5] for the transition matrix that describes the birth-
death process with fixed birth and death rates, or equiva-
lently the single-server queue M/M/1/%.

To evaluate the real-time transition matrix corresponding
to (16), one may use the tabulated transform [8]

oft4+2z —N/2 1 y
f ( ) IN(m)e*ktdtz _e‘Nu+ze ,
0

t sinhu

N>—1, Rek>1, |argz|<w (17)

and the convolution theorem to obtain the inverse transform

L~1

w0~ 2y coshu+(1 +y>—yB)ye “+Boy—Ku

0 sinhu
_1 f T Bos2 _l_r/z
2Jo T+ y(y=PB)s
XIg(N(r=s)[7+ y(y— B)s])ds=Nk(7). (18)
From (10), (16), and (18), the transition matrix we seek is
Ki(T) =" T, _ (7)) + V" [~ Njjs1]4m|(7)

+ Y(¥= BIN|j 11+ |m|(T) + BON|jj+|m(T)].
(19)

It is straightforward to check that in the case y=1, 8=0 the
continuum limit of (18) and (19) gives the correct
heat propagator Go(x' +x;7)+Gy(x'—x;7), Go(x;7)
=(27m7) " Pexp(—x*27), for diffusion in the presence of a
reflecting barrier.

Configuration space form. Equations (18) and (19) show
the structure outlined above. The sum over all orders in V
results in the factor ¢#°*/? in (18). The broken paths indicated
by the position indices in (19) arise from the Feynman-Kac
path average over the interaction W=wJ§, where & is the
discrete d-function interaction matrix with a single nonzero
unit entry at (0,0), and w is the Toeplitz generalization of (8).
The remainder of the integrand in (18) is the final result of
the multiple convolution representing the allocation of total

2 coshu—(1+ y*— yB)e “— Bo

(16)

time 7 among the boundary loops discussed above. A physi-
cal interpretation of these factors in the integrand follows
from the matrix generating function
- a—b
aMy(1/2)—bX _
€ 2 ( atb

1‘=—-oo

/2
)J I;(Na*=bH)T;, (20)

where T;, j=0 (j<0) is the elementary Toeplitz matrix
with 1’s on the jth super- (sub-)diagonal and 0’s elsewhere,

N =

e2y)

and My(1/2) generates the symmetric walk, as implied by
(4). Equation (20) follows from the Graf addition theorem

[9]. If we set a=7+[y(y—B)—1]1s/2, b=[v(y—Pp)
+1]s/2 in (20), (18) can be written as

1/2
Ng(7m)= Tf elomu
0

X (el 27(y=Bul™My(1/2) = [1+ ¥(y=BruMo(1)) gy
(22)

showing that the signature of this class of boundary pro-
cesses is a weighted convolution of nonsymmetric random
walks, biased toward the boundary, with symmetric walks on
different time scales. A similar form for the (nonprobability-
conserving) discrete §-function propagator is derived in [10].

Applications. The approach used here can in principle be
applied to other continuous-time random walks, those with
idempotent interactions Vo< V2, including interaction matri-
ces with diagonal elements that have periodic binary struc-
tures or are generated by binary walks, and those with dis-
crete versions of singular interactions 8. Solution of the
latter set of problems would generalize known d=1 con-
tinuum solutions for n=1,2 [11] to include a periodic field in
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the tight binding approximation. A further possible extension
is to processes with second-order time derivatives, such as
variants of the discrete telegraph equation [12]. The present
approach may also be useful for approximating time-
dependent Green’s functions for chemical and molecular sys-
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tems such as those discussed in [6], in which the states of the
system are highly localized.

This work was carried out in part while the author was on
sabbatical leave at M.L.T. I thank H. Cheng and P. A. Sam-
uelson for helpful discussions.
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